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Abstract 

In a previous paper [Grimmer (1991). Acta Cryst. 
A47, 226-232], general connections were given 
between the forms of tensors describing equilibrium 
properties in materials with point-group symmetry 
described by any of the 122 crystallographic Shub- 
nikov point groups. In the present paper, it is shown 
how the results must be modified to include trans- 
port properties also. At least six different prescrip- 
tions for the treatment of transport properties in 
magnetically ordered crystals have been proposed in 
the literature. It is shown that the one due to 
Shtrikman & Thomas [Solid State Commun. (1965), 
3, 147-150; erratum (1965), 3, civ] leads to a 
straightforward generalization of the results for equi- 
librium properties that seems to agree with experi- 
ment. Tensors describing transport properties 
generally consist of two contributions, T =  Ti+ T s. 
The tensor T ~ is invariant under time reversal 1', 
whereas T s changes sign under 1' and therefore 
vanishes for dia- and paramagnetic crystals, which 
are invariant under 1'. The form of the tensors 
describing electric and thermal conductivity, the 
thermoelectric Seebeck and Peltier effects and the 
Hall, Righi-Leduc, Nernst & Ettingshausen effect 
are given explicitly for all the 122 crystallographic 
and 21 limiting point groups. 

1. Introduction 

The application of space-time symmetry to the 
transport properties of magnetically ordered crystals 
has been the subject of considerable controversy. 
Consider, as an example, the linear relation between 
the Cartesian components of the electric field E and 
the current density j, 

j,= CrikEk. 

Birss (1964) was the first to propose a prescription 
that gives the forms of tensors describing transport 
properties in magnetically ordered crystals. He 
argued that O'ik changes sign under time reversal 1' 
because E is invariant and j changes sign under 1'. A 
dia- or paramagnet is left invariant under 1' and so 
~r~k is also invariant under 1', according to the 
Neumann principle. It follows that the electric con- 
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ductivity crik must vanish for dia- and paramagnets, 
in contrast to experimental evidence. Birss, therefore, 
restricted the validity of the Neumann principle for 
transport properties to the unitary operations in the 
Shubnikov point group, i.e. those conserving the 
direction of time. 

Expressing E as a function of j, we can write 

E~ = P~k(H)jk 

if an external magnetic field H is applied. Using the 
Onsager relations in the form p;k(H)=pk,{--H), 
Birss (1964) showed that the part of Pik that is 
symmetric in i and k is an even function of H and 
that the antisymmetric part is an odd function of H. 
The component of E determined by the antisym- 
metric part is perpendicular to j and, therefore, 
causes no energy loss, whereas the component 
determined by the symmetric part does contribute to 
energy dissipation. If p is expanded into a power 
series with respect to H, the constant term describes 
(electrical) resistance, the linear term the ordinary 
Hall effect and the quadratic term magneto- 
resistance. The coefficients of odd powers of H 
describe the generalized Hall effect and the coeffi- 
cients of even powers describe generalized magneto- 
resistance according to Birss. This implies that the 
Hall effect should vanish at H = 0. 

The Birss (1964) prescription was criticized by 
many authors. An early criticism was published by 
Shtrikman & Thomas (1965), who do not limit the 
validity of Neumann's principle and who consider 
the behaviour of Pik under time reversal to be 
determined by applying 1' not to the constitutive 
equation but to the Onsager relations, which give 
Pik(S,H) = p k , ( - - S , - H ) ,  where S denotes the spin 
arrangement of a magnetically ordered material. The 
two prescriptions give the same result for materials 
with grey point groups (diamagnets, paramagnets 
and those antiferromagnets that are invariant under 
antitranslations). They differ in that the Shtrikman- 
Thomas prescription allows an extraordinary Hall 
effect (i.e. for H = 0) in all crystal classes compatible 
with ferromagnetism and a linear magneto-resistance 
in all classes compatible with piezomagnetism. 
Shtrikman & Thomas also discuss the experimental 
evidence in favour of their view. 
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764 TRANSPORT PROPERTIES IN MAGNETICALLY ORDERED CRYSTALS 

Unfortunately, the concise paper of Shtrikman & 
Thomas (1965) was given much less attention than a 
series of papers by Kleiner (1966, 1967, 1969) 
published in the influential Physical Review. Kleiner 
uses a point group w that either is equal to the 
Shubnikov point group ~ of the crystal or has twice 
as many elements. Whereas ~ leaves the Hamil- 
tonian ~(I-I) invariant, the elements of ~ map it into 
g(___ H). Kleiner uses the Neumann principle for the 
unitary elements of w and a modified principle for 
the antiunitary elements. This modified principle is 
that of 'generalized Onsager relations' and replaces 
the usual Onsager relations. 

Cracknell (1973) criticizes both Birss and Kleiner 
and proposes prescriptions that supplement those of 
Birss with a modified Neumann principle for the 
antiunitary elements of the point group. 

Pourghazi, Saunders & Akgrz (1976) and Birss & 
Fletcher (1980) criticized all preceeding prescriptions 
[except that of Shtrikman & Thomas (1965), which 
they ignored] and proposed new ones. Finally, 
Butzal & Birss (1982) and Malinowski (1986) advo- 
cated prescriptions that are equivalent to those of 
Shtrikman & Thomas (1965), but did so without 
mentioning their paper. 

The controversy also concerned the question of 
whether time reversal 1' should be replaced by mag- 
netic reversal 1 in the discussion of transport proper- 
ties. The operator 1 reverses the signs of all magnetic 
moments in the material as well as the signs of 
external magnetic fields, whereas 1' is, in addition 
assumed to reverse the sign of any current. 

The argument given at the beginning of this sec- 
tion, which led Birss to restrict the validity of the 
Neumann principle, led Pourghazi et al. (1976) and 
Pourghazi & Saunders (1977) to apply 1 instead of 1' 
to j i=tr~Ek;  they obtained h r u ( B ) = o b ( - B )  
because 1 leaves j and E invariant. 

Butzal & Birss (1982) also rejected the use of 1', 
but included a theoretical justification of the fact that 
1' may be applied to constitutive equations defining 
equilibrium properties but not to those defining 
transport properties. They also avoided applying 1 to 
ji = trgkEk and assumed instead that the effect of 1 on 
o'~k is given by the Onsager relations. The result is the 
same as that obtained 17 years earlier by Shtrikman 
& Thomas (1965). These authors had already shown 
that the flows in constitutive equations describing 
transport properties do not simply change sign under 
1' because of the irreversible nature of transport 
processes. Therefore, the transformation law under 
1' of transport properties does not follow in a simple 
way from the constitutive equations but is given by 
the Onsager relations. 

We conclude that it does not matter whether we 
speak of magnetic or of time reversal as long as the 
behaviour of the tensors describing transport proper- 
ties is taken from the Onsager relations. It follows 

from these relations that the transport flows in the 
constitutive equations for transport properties can be 
split into two parts, one that is invariant and another 
that changes sign under 1' or 1. It is interesting that 
to Butzal & Birss (1982) such behaviour seemed 
acceptable for 1 but not for 1', whereas Shtrikman & 
Thomas (1965) accepted it for 1' 

It seems to the present author that the use of 
'magnetic reversal' in connection with transport 
properties expresses the physical meaning more 
clearly than 'time reversal'. The term 'magnetic 
reversal' instead of 'time reversal' could also be 
employed in connection with equilibrium properties. 
The simultaneous use of two different operators 1 
and 1' leads to unnecessary complications. The 
symbol 1' and the term 'time reversal' will be 
employed in the following in accordance with usual 
practice. 

It thus took about 20 years for the Shtrikman- 
Thomas prescription to gain widespread acceptance. 
It is the purpose of the present paper to apply this 
prescription to transport properties involving tem- 
perature and concentration gradients and electric 
and magnetic fields in crystals that may have mag- 
netic order and to show that it leads to a formalism 
of beautiful simplicity. 

Interest in such transport properties has increased 
considerably in recent years because it has been 
found that thermoelectric and thermomagnetic 
effects attain considerable values in the mixed states 
of many high-Tc superconductors. [See, for example, 
Varlamov & Livanov (1991), Huebener (1990), 
Kober, Ri, Gross, Koelle, Huebener & Gupta (1991), 
Freimuth, Hohn & Galffy (1991), Zavaritsky, 
Samoilov & Yurgens (1991) and references men- 
tioned in these papers.] 

2. Thermoelectric phenomena 

2.1. Basic equations and Onsager relations 

Nye (1985) gives a careful presentation of the 
concepts of thermoelectricity, which may be sum- 
marized for cubic materials as follows: 

j = - tr grad ~p - fl' T- i grad T 

h = - fl" grad ~p - yT-  1 grad T. 
(1) 

These equations give the densities of electric current j 
and heat current h as functions of the gradients of 
temperature T and of the electrochemical potential 
~p = ~ - / z / e ,  where ~ is the electric potential, /z is 
the chemical potential and - e  is the charge of the 
electron. The Onsager theorem states t h a t / T =  fl" 
for dia- or paramagnetic materials in the absence of 
magnetic fields H. The isotropy of the thermoelectric 
effects described by (1) is a consequence of the cubic 
symmetry that has been assumed. 
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If the crystal under consideration does not have 
cubic symmetry, (1) must be replaced by 

ji = - O ' i k ( O ~ / O X k )  - -  /3;k T -  l(OT/OXk) 

hi = - /31~(O~/Oxk) -  TikT-l(OT/Oxk),  (2) 

where a Cartesian coordinate system is used. For 
dia- or paramagnetic materials in the absence of 
magnetic fields, the Onsager theorem states that y 
and the electric conductivity tensor cr are symmetric 
( Y i k  = Y k i  and trek =trk,.) and tha t /3"  is the transpose 
of/3 '  (/3" = / 3 "  or/3~.~ =/3~,i). It follows that the 6 x 
6 matrix 

L/3 "r, (3) 

is symmetric, i.e. F '  = F or F~, v = Fv~,, where/z,  u = 
1, . . . ,  6. 

In the following, we take j and grad T as indepen- 
dent variables in accordance with the usual experi- 
mental conditions. This will allow us to connect /3 '  
and 9' with more frequently used quantities. It fol- 
lows from (2) that 

(OFpIOx3 = - P,d~, - ~;k(OTIOxk) 
(4) 

hi = T~.~J'k -- kik(OT/Oxl,), 

where 

Pik = (Ov- l)i k (5) 

k i k  = - -  T - 1 ( / 3 ~ j , / 3 ~  k - ")/ ik )  ( 6 )  

~ k  = T -  lpo./3jk (7) 

,,~ ;.~ = T - l - ' '  p,j&k. (8) 

The property tensor P;k describes electrical resistivity, 
kik describes the thermal conductivity at j = 0, 27~, is 
responsible for the Seebeck effect and TX;~ is respon- 
sible for the Peltier effect. I f / "  is symmetric then p 
and k are also symmetric and ~:" = X", i.e. the 6 × 6 
matrix 

I- K = L ~ k (9) 

is symmetric. 
Dia- and paramagnets are invariant under time 

reversal 1'; the point groups of such crystals are 
'grey', i.e. they are direct products of the ordinary 
'black' point groups with 1'. Neumann's  principle, 
which will be discussed below in more detail, then 
gives the usual restrictions for the forms of symme- 
tric second-rank tensors o-, y, p and k and general 
second-rank tensors/3'  and ~ ' .  These restrictions are 
given, for example, by Nye (1985) in Table 3 on p. 23 
and Table 14 on p. 227 of his book. They are also 
contained in Table 1 of the present paper, as 
explained below. 

Let us now consider magnetically ordered crystals; 
for example, ferromagnets or ferrimagnets, which 
possess nonvanishing magnetic moments, and anti- 
ferromagnets, which consist of two or more sublat- 
tices with magnetic moments, the vector sum of 
which vanishes. Let S symbolize the spin arrange- 
ment in the crystal and - S  the arrangement in the 
magnetic companion with all spins reversed; an 
external magnetic field H may also be applied to the 
crystal. The Onsager relations then can be written as 
(cf. Shtrikman & Thomas, 1965) 

o - u ( - S , - H )  = o),{S,H) (10) 

and 

/ 3 b ' ( - S , - H ) = / 3 j i ( S , H ) .  (11) 

Relations similar to (10) also hold for y, p and k; 
relations similar to (11) also connect ,~" and ~ ' .  

The Neumann principle states that the form of a 
property tensor such as cr is such that the tensor 
remains invariant under the point group of the 
material under consideration. Each element of a 
point group is of one of four__possible types R, R I '  
( = R ' ) ,  R1 ( = R )  or RI '  ( = R ' ) ,  where R denotes 
rotation, 1' time inversion, 1 space inversion and 1' 
(=  11') combined space and time inversion. Notice 
that the identity 1 is a special case of a rotation. 

Temperature T and the potential ~ are invariant 
whereas OT/OXk, O~/OXk, j and h change sign under 
space inversion 1. It follows then from (2), (3), (4) 

m 
and (9) that F and K are always invariant under 1 
[i.e. F and K must be of type i or s in the termi- 
nology of Grimmer (1991)]. In order to evaluate the 
restrictions on F and K that follow from Neumann's  
principle, we may therefore replace the elements Rl 

- - t  
in the point group of the material by Rl and R 2 by 
R ;. Therefore, it is sufficient to consider amongst the 
122 crystallographic and 21 limiting Shubnikov point 
groups the 32 crystallographic and seven limiting 
ones that only contain elements of types R and R '  
These point groups are referred to as 'proper'  groups 
because they contain only proper rotations (with 
det R = 1), not roto-inversions R (with det R = - 1) 

2.2. Magnet ic  crystals & the absence o f  an external  
magnet ic  f i e M  

The equation 

o'~j(S) = R/~ 1Rj IO'kt(S)= RkiRoo'kt(S ) = o'u(R * S) 

(12) 

may be interpreted passively as describing the electric 
conductivity of the present physical system in a new 
(primed) Cartesian coordinate system obtained by a 
rotation R - l  or actively as the description (in the 
former coordinate system) of a new physical system 
obtained by a rotation R, which transforms the spin 
arrangement S into R * S. Similarly, R '  transforms S 
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T a b l e  1. The forms of tensors of the second and third ranks describing tensor properties 

S L G A s-type S G A s-type 
I I I I I I I l 

• • • • • • 

• • • [ ]  • 
i i i i 

&nor- • • • 
thic III... II I 
mo,,o- I I I : : : II I i 
clinic ) 
fly III:::III 

• • • • • • * . , ! • • • • * • . , 

• • • • • • ° " " i " • " " • " " " • I 

• • • • • • • • . 1 .  • • . • . . . .  
l I ' / I '.. 

X , • • • • • , • . . . . .  

• • 

. . . . .  . • • • ~: (•) 
m i 1 i i 

I I : : I  I (m> I : [ l  ram2 

S -: G A s-type 
J t I I 

.//.  < z  • • • 

[ ]  • 2' 
! i i i i i i 

II::II m I : I ~, 
I : I  ~/m il::ll~ ~'/m' 

II::II I : I 
• • • • • • 

• • • • • • 

. . . .  • 2 
t i I , ) . . I I 

i 
• • . I . . . . . .  ,l" 2'2'2 

1 i i n | I 

I" " : "  "I .,,~,~ 

l l'::IZc~/m> I : : I  ,~m,~ l : Z  =,=,,. 

= ° o . I  1 ! l : X  (m~) . . . . . . . . .  =,=,= 
clinic • • • • . . . . .  ' . . . . . .  • " • • " " " 

I1~, . . . . . . . . . . . . . . .  ( 2 r a m ) /  . . . . .  • • • • ( 2 ' , - ' m )  
i 

• " • • " " i • • I I I I I I I I I I | 

"./ / .   i!T/ . . . . . . . . .  

o r t h ( ~  • : / : ; T : / 
thorn- .  , •  o • . (2') . . . .  (2'22') . . . .  (22'2') 

l 

. .  I " " : ' " I(~,/~,>i 

,II::II) 
: • • • • . . . .  

• • • • . . . .  

• • • • 
r m " v " " • m 

N X /  

. . . . . . . . .  • • • ;  • o 

• • • • • , • 

I " " : " " i I  " (2 ' ram' )  I . I ( ~ . , )  
• • i -  • . I .  . . • . • • . . . . .  
• • ) .  . . I .  . . :• . . . . . . . .  (ram'2') 
• • ' , .  • . J .  • . l . o  • . i  • i n  " i " " • 

. ' ,4 . ' ,4 : : : :r : : : / : / : i  
• " • " " • " " [ ]  . . . .  • " " " I  . . . . . . . . . .  42'2' 

I I # I I I I | I I I .?./.? 71 4ram 4rn'rn' 

4/ra • 4/mmm • 4/mm'm' 
• . . . .  • • . . . . . . .  • • • • • • : o • . 

. . . . .  ! . . . . .  I I ~ . . . . . . .  . . .  ~ ' , ~ '  

t e t r a -  • " • • " • . . . . . .  m • " • I • • " • • I I I I I i I I1 • I • • • I ° * • 

~o.~ X .  x . . . .  ..% • ..,< : : : : / / : : : :  
. . . . . . . . .  4' . . . . . . . . .  4'22' • • • ! . . . . . .  (4'2'2) 

I • I • I , I I • I I I I • | ° I • I 

H ~ H  7 f i " ~ " ~ ~ " ~  7 1 ' 2 m ' ' . ~ . / ?  (7t'm'2) 
4'/m I 4 ' [mmm'  (4'[mra'ra) 

• • • • • o • • • ° • ° • i ° " • 

i I I "  I I ~,~, . . . . . . . . .  (a,=,.) 

i n t o  R '  • S = - R  • S a n d  ( r u ( S )  i n t o  

o'o.(R' * S ) =  o - / j ( - R  • S ) =  RkiRtjO'kt(--S) 
= RkiRtjo-lk(S), ( 1 3 )  

w h e r e  ( 1 0 )  h a s  b e e n  u s e d •  I f  R ( o r  R )  i s  a n  e l e m e n t  o f  

t h e  p o i n t  g r o u p  o f  t h e  m a t e r i a l ,  t h e n  ( 1 2 )  b e c o m e s  

~ r / j ( S )  = Rk~Ru~rk,(S); ( 1 4 )  
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Table 1 (cont.) 

S G A s-type S G A s-type S G A s-type 
t i 

. ' ~ M /  .",4."4 . . . . . .  . . . / /  
• . • . . . . . .  [ ]  . . . . . . . .  [ ]  B2'  

tri-  
~ o n ~ l .  ~ ~m , ~,m' / / I  

. . • • . • • . . 

• " 4 "  M " / "  ~ . ' ;  " N 

. > o >  

6 1 m  

a n d  I " " I . . . . .  
hexa- . • • • • • • 
gonal  

• . . . . .  . .  • . ,  6 t 

6'/m' 

OO r t l  t 

o o  / t n  r n  t 

62'2' 

i . . ~  0mm ~ '~ '  
6 [ m m m  6 / m m ' m '  

6 2 m  • • • 6 2 ' m '  

~ I I . . . . . . . . . . . . . .  (6rn'2,) 
n • • • i • • • l . . . . .  • * • • 

/:/  

6'22' • . . . . . . . . . .  (6'2'2) 
. . . .  n 

6'2m'  • • • (6'rn°2) 

6'Im'rn~' (6 ' I~ ' " '~)  

6'm2'  : (~'2'rn) 

6'ram' • I . .  • ] ( 6 ' r n t r n )  

~ • . ° 

m 

t ropic  

anti • • 
cublc • • 

. .  • . p . .  • . , .  . . 

[ ]  

m~ 

• ° • i -  • • : 

. . . . .  O O O O t l l  . . . . . . .  t 

X~ 43m 
• • . i • * • i • • • i i 

r / / , 3 t / l ,  

4 ° 3 2 ,  

7V3m' 

l ' t l 3 l l " l  t 

Arrangement  of  tensor elements: 
Second rank: 

Second index 
1 2 3  

'1 I First  index 2 
3 

K e y  to  g r a p h i c  s y m b o l s :  
• N o n v a n i s h i n g  e l e m e n t ,  

: : E q u a l  e l e m e n t s ,  

Third rank: 
Third index 

1 2 3  
23 
32 
31 
13 

First  two indices 12 
21 
11 
22 
33 

E l e m e n t s  e q u a l  in  m o d u l u s  b u t  wi th  o p p o s i t e  s ign.  
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if R '  (or R ' )  is an element of the point group of the 
material, then (13) becomes 

We define 

and 

o'/j(S) = RkiRoo'u,(S). (15) 

~rg(S) = ~[~r,j(S) + crj,(S)] (16) 

o-0.(S ) = ½[o-u(S ) - o-j~(S)]. (17) 

It follows from these definitions that O ri is symmetric 
and or s antisymmetric, tr)~ = - t r y .  Putting R '  = 1' in 
(13), one obtains t r 0 ( - S ) =  trji(S), from which it 
follows that o-~(- S) = try(S) and t r~(-  S) = - tr,~(S). 
The tensor t / i s  therefore invariant under 1, 1' and 
1' ,  whereas tr s is invariant under T and changes sign 
under 1' and 1' Such tensors are referred to as 
inversion-invariant or i tensors and space-inversion- 
invariant or s tensors, respectively (cf. Grimmer, 
1991). We conclude that tr can be written as 

o-o.= ,~ + ~,~, (18) 
where or i is a symmetric i tensor and ~r s an antisym- 
metric s tensor. 

Table 1 gives the forms of these tensors and also of 
tensors of the third rank. It follows from Neumann's  
principle that tensors of type s vanish for materials 
with point groups containing 1' or 1' .  Table 1 lists in 
the 's-type' columns all crystallographic and limiting 
Shubnikov point groups that contain neither 1' nor 
]". These point groups are denoted by their 
Hermann-Mauguin  symbols. The monoclinic point 
groups are listed twice, for monoclinic axes parallel 
to y and z. (x, y and z are the axes of the Cartesian 
coordinate system used to describe the tensor.) Also, 
many other crystallographic point groups appear 
several times in different orientations, distinguished 
by the order in which generating elements are listed 
in the Hermann-Mauguin  symbol. A symbol in 
parentheses refers to a point group that has already 
been met in a different orientation when the table is 
read as usual from left to right and top to bottom. 
The connection between the position in the 
Hermann-Mauguin  symbol and the orientation of 
the generating element with respect to the Cartesian 
coordinate system follows the usual conventions. 
These are stated in detail in Grimmer (1991). The 
point groups* listed in a box in an 's-type' column 
give the same restrictions for s tensors of any given 
rank and intrinsic symmetry. These are stated in 
Table 1 for tensors of the second rank in the upper 3 
x 3 fields and for tensors of the third rank in the 
lower 9 x 3 fields. The 'G' columns refer to general 
tensors, i.e. tensors without intrinsic symmetry, the 
'S'  columns to tensors symmetric in their first two 

* The proper point group has always been listed first. 

indices and the 'A' columns to tensors antisymmetric 
in these indices. 

The forms of the i tensors can also be read from 
Table 1. Because these tensors are invariant under 
inversions, the Neumann principle gives the same 
restrictions for the point group G and for the Laue 
group obtained from G by taking ]- and 1' as addi- 
tional generators. All the point groups with the same 
Laue group form a Laue class; the restrictions on i 
tensors depend only on the Laue class to which the 
point group of the crystal belongs. Each Laue class 
contains exactly one group consisting of pure 
rotations only. Such groups are in boxes in Table 1. 
For pure rotation groups, Neumann's  principle leads 
to the same restrictions for i and s tensors (of given 
rank and intrinsic symmetry) because the behaviour 
of the tensor under inversion is irrelevant for pure 
rotation groups. We conclude that the forms given 
for one of the framed groups are valid also for i 
tensors and all crystals with point groups in the 
corresponding Laue class. Only the forms in the 
heavier-rule boxes therefore appear for i tensors. 

Returning to (18), we notice that an antisymmetric 
s tensor of the second rank is equivalent to an s 
vector, 

0 ~r~2 -~r~] 
- ~r~2 0 ~r~3 
~r~ - ~r'~3 0 

o'•3"] 
- o '~ , ] .  

o-~2j 
(19) 

The magnetization M is also an s vector, from which 
it follows that o -s may be different from zero for all 
point groups that are compatible with spontaneous 
magnetization, i.e. with ferro- or ferrimagnetism. 

Consider as an example cobalt with point group 
62'2'.* Table 1 gives the form of the antisyrnmetric s 
tensor or s in column A of the field 62'2' and the form 
of the symmetric i tensor or' in column S of the field 

[~2], i.e. [" ] o"~ ~ o'~ 2 0 

or= -crY2 cr~l 0 . (20) 

0 0 try3 

If an electric field E is applied parallel to the x axis, 
we find for the current density 

j2 = --0"~2 0"~1 0 = -- 2El . 

j3 0 0 0"~3 

(21) 

The second component of j is a result of the extra- 
ordinary Hall effect. It is also called the spontaneous 
Hall effect and we have shown that it may appear in 

* The conventions state that the z axis of the Cartesian coordi- 
nate system is parallel to the symmetry axis 6 and that x and y are 
parallel to two of the symmetry axes 2'. 
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exactly those crystals the symmetry of which allows 
for spontaneous magnetization M0. An early meas- 
urement of the spontaneous Hall effect, i.e. the Hall 
effect in the absence of an external magnetic field H, 
was made by Cheremushkina & Vasil'eva (1966), 
who found it in cobalt. 

Notice that the form (20) for ~r is valid not only 
for 62'2'. In fact, Table 1 shows that ~r; and ~ have, 
for the groups 

2'2'2 m'm'2  m '2 'm m ' m ' m  
4 -4 4/m 42'2' 4m'm'  -42'm' 4 /mm'm'  
3 3 32' 3m' 3m' 
6 -6 6/m 62'2' 6m'm'  -62'm' 6/mm'm'  
oo oo lm 002' oo m' oo /mm',  

the same form as for 62'2'. For all these groups, the 
spontaneous magnetization Mo must be parallel to 
the third orthogonal axis and the spontaneous Hall 
coefficient will be the same for any direction of E 
perpendicular to M0. 

Generally, one can say that the tensor o- of elec- 
trical conductivity splits into a tensor ~r ~, which may 
be different from zero for any crystal symmetry and 
which describes electrical conductivity in its narrow 
(energy-dissipative) sense, and a tensor o-', which 
may be different from zero only for crystal symme- 
tries permitting spontaneous magnetization and 
which describes the (lossless) spontaneous (or extra- 
ordinary) Hall effect. The tensor ~r in its broader 
sense is, in general, neither purely of type i nor 
purely of type s, i.e. it does not transform according 
to an irreducible representation of the group 
{1,1,1',1'}, in contrast to the tensors describing equi- 
librium properties. However, ~r can be split into two 
tensors, ~r" and ~r s, that not only have a definite type 
but also a higher intrinsic symmetry and a clear 
physical interpretation. The current density j also, in 
general, neither is invariant nor simply changes sign 
under time reversal 1' 

Malinowski (1986) discusses whether the Onsager 
theorem predicts tensor symmetries that do not 
depend on the point group of the material, i.e. 
intrinsic symmetries, as thermostatic arguments do 
for equilibrium properties [cf. Nye, 1985, chapter X] 
or whether it gives restrictions depending on the 
point group of the material, as Neumann's principle 
does. It has been shown above that, for ~r, the 
answer is that Onsager's theorem predicts the split- 
ting into two tensors with different intrinsic symme- 
try and different behaviour under 1' 

Obviously, relations (12)-(18) remain valid if ~r is 
replaced by y, p or k. 

Whereas in (12) and (14) o- may be replaced by X' 
or X",  it must be replaced by X' on one side of the 
equality sign and by X" on the other in (13) and (15) 
because the Onsager relations 

X,~.'(- S) = X~,(S) (22) 

are used in their derivation. It follows that 

= nk,nO 'k,(S) 
.,~b'(S) = Rki Ro~, 'k)(S ) 

(23) 

if R (or R) belongs to the point group of the material 
and 

~.'(S) = R~iRo.~k(S ) 
' R l ,  

2 0 ( S )  --" kiRij£1k(S) 
(24) 

if R'  (or R') belongs to the point group. Arguments 
similar to those leading to (18) show also that X' and 
X" can be written as sums of two contributions 

! s 
I : 0  = + I ; u  

(25) 

where the tensors 2 i and X" are second-rank tensors 
without intrinsic symmetry; X i is of type i and X s of 
type s. If X s = 0, as is the case for, for example, dia- 
and paramagnets, then X"(S) is determined com- 
pletely by X'(S). The 3 x 3 matrix describing X"  is 
then the transpose of the matrix describing X', X"  = 
X". This is no longer true if X ' 4  0. In fact, if the 
point group of the crystal is black, then Neumann's 
principle will give the same restrictions for X i and X ~, 
i.e. no connection between X'(S) and X"(S), 
whereas, for black and white point groups (which 
contain 1' only in combination with rotations), the 
restrictions on Xs are usually stronger than those on 
X i, according to Table 1. The effect giving rise to X s 
in magnetically ordered crystals may be called the 
spontaneous or extraordinary Nernst-Ettingshausen 
effect. This effect also has been measured in cobalt 
by Cheremushkina & Vasil'eva (1966). Further refer- 
ences to measurements of the spontaneous Hall and 
Nernst-Ettingshausen effects are given by Campbell 
(1979). Results analogous to (22)-(25) connect fl' 
and fl" 

2.3. Crystals & an external magnetic f ield 

Assume that an external magnetic field is applied 
to a crystal with or without magnetic order. If we 
restrict our attention to terms linear in H, we may 
use (4) with 

p/j(S,H) = p/j(S)° + p~k(S)Hk 

k,y(S,H) = k°(S) + k/~k(S)Hk 

Z,~(S,H) = Z~(S) + Z 'I (26) ,Tk(S)Hk 
" , , 1  Xu (S ,H)=  X~°(S) + X0k(S)Hk, 

where pl describes the (ordinary) Hall effect, k I the 
Righi-Leduc effect, X'I the Nernst effect and TX" 
the Ettingshausen effect. 

An arbitrary rotation transforms the spin arrange- 
ment S into R * S, the magnetic field H into R * H, 



770 TRANSPORT PROPERTIES IN MAGNETICALLY ORDERED CRYSTALS 

where (R * H)k = Rqknq ,  and pu(S,H) into 

pij(R * S , R  * H ) =  RmiRnjpmn(S,a ). (27 )  

1 S )Rqknq;  p~j(R * S,R * H) = p°(R * S) + Puk(R * 

(28) 

RmiRnjpmn(S,H) = RmiRn,[P°n(S)+ Plmnq(S)Hq] 
l • - RmiRnj[P°n(S) -t" RpkRqkPmnp(S)Hq] , 

(29) 

where RpkRqk = 6pq has been used. It follows from 
(27)-(29) that 

p°(R * S ) =  Rm,R,jp°,(S) (30) 

and 

P~jk(R * S ) =  1 RmiR.jRpkPm.p(S). (31) 

R'  transforms S into R ' * S = - R * S ,  H into 
R'  * H = - R  * H and pu(S,H) into 

po(R' • S , R '  • H) = p,.j(- R • S, - R • H) 

= RmiRnjPmn(- S, - -  H). (32) 

p~](R' * S , R '  * H ) =  p°(R '  * S ) -  p~.k(R' * S)RqkHq. 

(33) 
Using the Onsager relations, we obtain 

RmiRnjPmn( - -  S, - -  H) 

= RmiR,,jp.m(S,H) 

= gmiR.j[P°m(S) + RpkRqkplmp(S)Hq]. (34) 

It follows from (32)-(34) that 

p ° ( R '  * S ) =  RmiRnjP°m(S) (35) 

and 

plijk(R' * S ) =  -- I RmiRnjRpkPnmp(S ). (36) 

The form of p0 (and of the other tensors with 
superscript zero) has been discussed in the previous 
section. 

Both the electric resistivity p and the magnetic 
field H are invariant under 1, irrespective of the 
symmetry of the crystal, It follows then from (26) 
that p '  is also invariant under 1. If the point group 
of the crystal contains R (or R), it follows from (31) 
that 

' • 

= RmiRnjRpkPmnp(S), (37) 

if it contains R' (or R'), it follows from (36) that 

phi(s) = -- RmiRnjRpkPnmp(S ). (38) 

Arguments similar to those leading to (18) show 
that the third-rank tensor p '  can be split ~tccording 

to 

p l  k =pbi k + p~ (39) 

into an i tensor 1; PUk, antisymmetric in its first two 
indices, and an s tensor p,~.~, symmetric in these 
indices. 

The ordinary Hall effect, i.e. the Hall effect due to 
an external magnetic field, is described in its narrow 
sense by p", whereas p "  gives the influence of mag- 
netic order on this effect. The ordinary Hall effect in 
its narrow sense may appear in any point group. It 
describes a Hall voltage perpendicular to the current 
density (owing to the antisymmetry of p"), which, 
for cubic and isotropic crystals, is also perpendicular 
to H. The Hall voltage determined by p "  need not be 
perpendicular to the current density. The tensor pl, 

--t vanishes for all point groups containing 1' or 1 , in 
particular for the point groups of dia- and paramag- 
netic crystals, which are grey, i.e. contain 1'; the 
point groups of antiferromagnets with black and 
white Bravais classes* are also grey (c f  Thomas, 
1965). On the other hand, pl, may be different from 
zero not only for ferro- and ferrimagnets but also for 
many antiferromagnets. 

The Righi-Leduc tensor k' can formally be treated 
in complete analogy with p',  i.e. 

kbk = kb~ + k~j~, (40) 

where k ~' is an i tensor antisymmetric in its first two 
indices and k "  an s tensor symmetric in its first two 
indices. The tensor k 's describes the influence of 
magnetic order on the Righi-Leduc effect. 

The Nernst and Ettingshausen tensors X '~ and 
TX ''~ are related by the Onsager relation Xb ' ( -S ,  
- H )  = X~;(S,H), from which it follows that 

, ~ , t l  ok ( - S) = - Xj]k(S). (41) 

An argument similar to the derivation of (37) and 
(38) gives 

, '  

= RliRmjR,,kXtmn(S ) 
X,,, ,,, (42) 

ijk (S) = RliRmjR,,kXt,,,,,(S) 

if the point group of the crystal contains R (or R) 
and 

,,1 tl 
= Rl iRmjRnkX rain(S) ( s )  - 

X" ,,, (43) 
uk(S) = -- R,R,,,jR,,kX,,,t,,(S) 

if it contains R' (or R'). In particular, if it contains 1' 
(or 1') then 

. ~ , , I  __ ,1 u~ - - X j , , .  ( 4 4 )  

In this case, 2 " '  is completely determined by X"  
according to (44). Both are general i tensors of the 
third rank. Generally speaking, the tensor X"  can be 

*I.e. antiferromagnets with antitranslations in their Shubnikov 
space group. 



HANS GRIMMER 771 

split as 

"~0~, = 2b~, + ~b~ (45) 
into an i tensor 2 li and an s tensor 2~s, both of 
which are third-rank tensors without intrinsic sym- 
metry. 2 "  ~ can be expressed in terms of these tensors 
as 

.a~ltl li ls jik = -- ~ Ok + 2~Uk. (46) 

3. Discussion 
In contrast to tensors describing equilibrium proper- 
ties, tensors describing transport properties generally 
split into two components behaving differently under 
I' if the point group is not grey. If one of the two 
components is symmetric under the exchange of the 
two indices that do not refer to H, the other will be 
antisymmetric in these indices. 

Some authors (Cracknell, 1973; Birss & Fletcher, 
1980; Malinowski, 1986) let H include internal mag- 
netic fields generated by the magnetic structure in 
addition to the externally applied magnetic field. 
Although both types of magnetic field behave in the 
same way under time reversal, there are essential 
differences, which require separate treatment in 
order to avoid confusion. Externally applied mag- 
netic fields may be chosen to be arbitrarily small so 
that an extension into powers of H does make sense, 
which is not the case for internal fields, e.g. in a 
magnetic domain of a single crystal of ferromagnetic 
material. The internal field of such a domain is 
invariant under the symmetry group of the domain 
whereas H may have any direction. 

Our treatment of transport properties is com- 
patible with the treatment of magneto-optic effects in 
magnetically ordered crystals by Eremenko & 
Kharchenko (1984). The optical properties also differ 
essentially from equilibrium properties because of 
the high frequencies that are involved. 

The author is very grateful to Professors H. 
Schmid and J. Brandm/iller for drawing his attention 
to transport properties in magnetically ordered crys- 
tals, for guiding him to relevant literature and for 
their constructive criticism of an earlier version of 
this paper. 
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Abstract 

Certain age-hardenable alloy systems can produce 
zones of large matrix distortion about precipitates 
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having a size misfit with the surrounding matrix. 
These zones grow with ageing and give diffraction 
effects that are challenging to interpret. This paper 
describes such a model, based upon the random 
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